Smoothing Effect for Schrödinger Boundary Value Problems

نویسنده

  • N. BURQ
چکیده

We show the necessity of the non trapping condition for the plain smoothing effect (H) for Schrödinger equation with Dirichlet boundary conditions in exterior problems. We also give a class of trapped obstacles (Ikawa’s example) for which we can prove a weak (H) smoothing effect Résumé. On démontre que l’hypothèse de non capture est nécessaire pour l’effet régularisant (H) pour l’équation de Schrödinger avec conditions aux limites de Dirichlet à l’extérieur d’un domaine de R. On donne aussi une classe d’obstacles captifs (l’exemple d’Ikawa) pour lesquels on démontre un effet régularisant affaibli (H).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Boundary Value Problems for the Magnetic Schrödinger Equation

We survey recent results on inverse boundary value problems for the magnetic Schrödinger equation.

متن کامل

Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for second order elliptic boundary value problems

The convergence of V -cycle and F -cycle multigrid algorithms with a sufficiently large number of smoothing steps is established for nonconforming finite element methods for second order elliptic boundary value problems.

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

The Derivative Nonlinear Schrödinger Equation on the Half Line

We study the initial-boundary value problem for the derivative nonlinear Schrödinger (DNLS) equation. More precisely we study the wellposedness theory and the regularity properties of the DNLS equation on the half line. We prove almost sharp local wellposedness, nonlinear smoothing, and small data global wellposedness in the energy space. One of the obstructions is that the crucial gauge transf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008